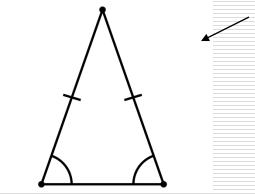
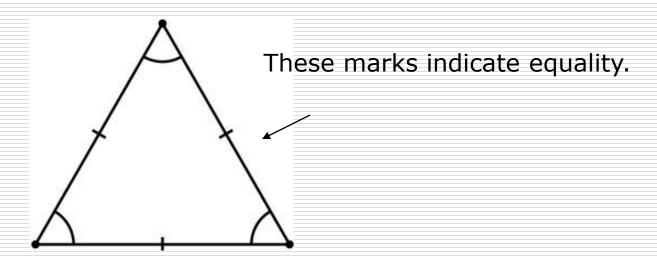

Triangle Inequality Notes

Triangle Inequality Theorem

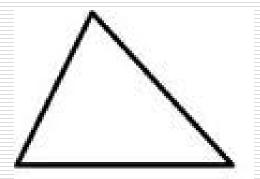

- □ Scalene triangle: A triangle that has no congruent (equal) sides.
 - None of their angles are congruent either

Isosceles Triangles

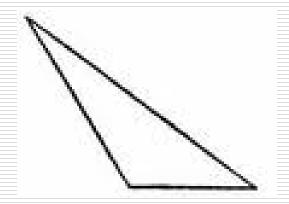

- Isosceles triangle: A triangle with at least two congruent sides
 - They have two congruent angles also

These marks indicate equality.

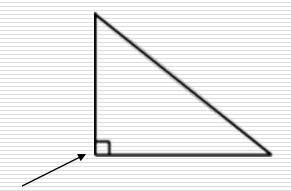
Equilateral Triangles


- Equilateral triangle: A triangle with three congruent sides
 - They have three congruent angles too

☐ Triangles can also be classified by their angles


Acute Triangles

□ Acute triangle: A triangles whose angles are all less than 90 °


Obtuse Triangles

□ Obtuse triangles: A triangle that has an angle greater than 90°

Types of Triangles

□ Right triangle: A triangle that has only one right angle.

This box indicates a right angle or a 90-degree angle.

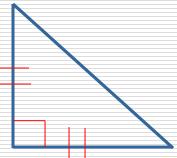
Classify the triangle by its sides and angles:

Acute Equilateral

- All sides equal
- All angles less than 90°

Classify the triangle by its sides and angles:

Right Scalene


- One right angle
- All sides are different lengths

Classify the triangle by its sides and angles:

Acute Isosceles

- Two sides congruent
- All angles less than 90°

Classify the triangle by its sides and angles:

Right Isosceles

- Two sides are congruent
 - One 90° angle

Classify the triangle by its sides and angles:

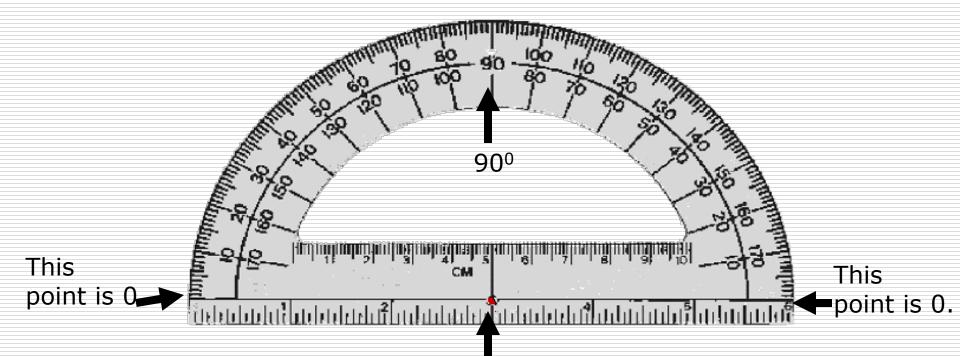
Obtuse Scalene

- All sides different lengths
- One angle greater than 90°

Classify the triangle by its sides and angles:

Obtuse Isosceles

- Two sides are congruent
- One angle greater than 90°


Interior Angles

- □ Interior angles: An interior angle (or internal angle) is an angle formed by two sides of a simple polygon that share an endpoint
- □ Interior angles of a triangle always equal 180 degrees.

Measuring Angles

☐ You measure angles with a **protractor**.

Notice there are two scales. Be careful which 0 you start at.

This point goes at the vertex of the angle